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The purpose of this paper is to provide summary information about statistical power for 

the collaborators in CSAP’s Youth Transition into the Workplace (YIW) initiative.  Power is of 

interest to YIW because (1) we want to have a rational basis for establishing sample sizes for 

the various components of the studies, and (2) we do not want to be in the position at the end 

of the study, if we find no difference between our “intervention” and “comparison” groups, of not 

being able to tell whether there truly is no difference or we just didn’t have a big enough sample 

to detect the “true” effect. 

The paper is a brief “primer” on power.  It begins (Section A) with a short, nontechnical 

definition of power and why we should be concerned about it.  Simply stated, the concept of 

statistical power refers to the ability of a test statistic to detect a true difference between two (or 

more) groups.  Power is an important issue in the planning and conduct of the YIW initiative for 

the following reasons.  First, we want to avoid concluding falsely that the YIW initiative’s 

prevention/early intervention programs are not effective if in fact they are effective.  Second, the 

way to reduce our chances of making such an error is to include in our studies samples that are 

large enough to detect differences between groups that we judge to be meaningful. Third, we 

do so by conducting power analyses--with each outcome included in the study--that tell us what 

sample sizes are required to assure a specific level of power to detect a specified effect size. 

The paper then (Section B) provides a more detailed explanation of the principles 

underlying the concept of statistical power.  These include the concept of the null hypothesis, 

the Type I error rate (the criterion for “statistical significance” for rejecting the null hypothesis), 

the “effect size” (the expected magnitude of the difference between intervention and control 

groups on a specified outcome variable), and the Type II error rate (probability of accepting a 

false null hypothesis).  Using these and related concepts, the relationship between statistical 

power and sample size is elucidated. 

Finally (Section C), the principles of power analysis are applied to the kinds of outcomes 

that are being studied in the YIW initiative.  Tables showing sample size requirements for a 

variety of expected values of outcome variables. 
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The purpose of this paper is to provide summary information about statistical power and 

its relationship to sample size for the collaborators in CSAP’s Youth Transition into the 

Workplace (YIW) initiative.  The issue of power has arisen in a variety of contexts in 

discussions about design of the site-specific and the cross-site YIW studies.  Power is of 

interest because (1) we want to have a rational basis for establishing sample sizes for the 

various components of the studies, and (2) we do not want to be in the position at the end of 

the study, if we find no difference between our “intervention” and “comparison” groups, of not 

being able to tell whether there truly is no difference or we just didn’t have a big enough sample 

to detect the “true” effect. 

So, we have prepared a brief “primer” on power and sample size.  We begin with a 

short, nontechnical definition of power and why we should be concerned about it.  We then 

provide a more thorough derivation of the concept of statistical power, for those who are 

interested.  Finally, we address the “so what” of power by providing some estimates of sample 

sizes needed to detect various sizes of effect for some of the kinds of outcome variables that 

we will be studying. 

��� 	������������������������������� ���!�������"�

Simply stated, the concept of statistical power refers to the ability of a test statistic to 

detect a true difference between two (or more) groups.  We worry about power in the YIW 

initiative primarily because we want to avoid getting into a situation in which we conclude, for 

example, that “workplace prevention programs are not effective in reducing substance use in 

the workforce (or in covered lives),” when in fact the prevention programs did have an impact 

but we did not have adequate power to detect it.  Although lack of power is an important 

problem in any study, it is particularly embarrassing in a multisite collaborative to arrive at the 

end and not be able to say definitively whether or not the intervention(s) was effective. 

Statistical power is influenced by several factors, including the difference between the 

“intervention” and “comparison” groups in a specified outcome variable (typically expressed as 

the “effect size”), the variance of that outcome variable, and the size of the samples.  Among 

these, only the size of the samples is readily manipulable by the experimenter, so it is the focus 

of the “action” concerning power.  Typically, the purpose of power analyses conducted during 

the design phase is to establish what size samples will be needed to assure a given level of 

power (minimally, 80% power) to detect a specified effect size�e.g., a pre-specified difference 
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between the groups, or the smallest effect that is judged to be meaningful (i.e., worth worrying 

about).  Also, it is important to remember�particularly in the context of large, multisite research 

programs�that power analysis is outcome-specific (i.e., dependent on certain characteristics of 

specific outcomes), and therefore studies with multiple outcomes must conduct power analyses 

for each outcome. 

So, the basic concepts are relatively simple.  First, we want to avoid concluding falsely 

that the YIW initiative’s prevention/early intervention programs are not effective if they in fact 

are effective.  Second, one important way to reduce our chances of making such an error is to 

include in our studies samples that are large enough to detect differences between groups that 

we judge to be meaningful. Third, we do so by conducting power analyses�with each outcome 

included in the study�that tell us what sample sizes are required to assure a specific level of 

power to detect a specified effect size. 

In the following section, we provide a more detailed description of statistical power and 

related concepts. 

 �� 	��������������������������������#�������
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A statistical null hypothesis generally has the form H0: θ = 0, where θ is a parameter of 

interest, like a correlation coefficient, a regression parameter, or the difference between two 

means.  We obtain a sample estimate of θ from observed data, for example we estimate a 

population mean using the sample mean.  Hypothesis testing is accomplished by computing a 

statistic, the test statistic, that has a known, fixed distribution when the null hypothesis is true.  

This distribution is called the null distribution.  The test statistic is usually a function of the 

sample estimate of θ and the estimated variance of that sample estimate. 

Suppose we are comparing the means of two populations for equality, we form the null 

hypothesis H0: µ1 - µ2 = 0 so θ = µ1 - µ2.  This hypothesis is generally tested by obtaining 

random samples from the two populations and forming an appropriate test statistic, often the t-

statistic.  The t-statistic is the sample estimate of µ1 - µ2 divided by the estimated variance of 

that sample estimate.  If the null hypothesis is true, then this test statistic is from the null 

distribution, the t distribution.  If the null hypothesis is false, the test statistic is a random 

variable from a different distribution, referred to as the alternative distribution.  The alternative 

distribution is usually not known, but may be estimable, and it always differs from the null 

distribution.  By comparing the value of the test statistic to the null distribution, we can state the 
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probability of observing that statistic, or one more extreme (further from 0), if the null hypothesis 

is true.  If that probability is very low, we reject the null hypothesis in favor of the alternative 

hypothesis, that is, Ha: θ � 0. 

Unfortunately, whether the null hypothesis is true or false, the test statistic can take on 

the same range of values (although with different probabilities), so we may never say with 

certainty that the null hypothesis is false, no matter how extreme the statistic is. So while it is 

very unlikely that we would observe a very extreme value for the test statistic if the null 

hypothesis is true, it is not impossible.  We must allow some probability of rejecting the null 

hypothesis when it is true, in order to allow the detection of true non-null effects.  The 

probability of rejecting a true null hypothesis is called the Type I error rate or α, and is generally 

set to some arbitrarily small value like .05. 

Associated with the null distribution is the critical value.  Values more extreme than the 

critical value fall in the rejection region, and have a probability less than α of being observed in 

the null distribution.  If the test statistic is in the rejection region, then we reject the null 

hypothesis; if not, we do not reject the null hypothesis.  The probability of failing to reject a false 

null hypothesis the Type II error rate or β.  1-β, the probability of rejecting a false null 

hypothesis, is called power. Power is a direct function of the degree to which the null and 

alternative distributions overlap (less overlap = more power) and α. 

Since the null distribution is fixed and α is generally set by convention to .05, only the 

alternative distribution may by influenced by the experimenter.  Two factors influence the 

alternative distribution.  One is the magnitude of effect.  Magnitude of effect is the degree to 

which the null hypothesis is incorrect, or how far the true value of θ is from 0.  Larger 

magnitudes of effect lead to greater disparity between the null and alternative distributions and 

more power.  The other is the variance of the sample estimate of θ.  Sample estimate variation 

may be thought of as follows.  Suppose we want to estimate µ, the mean of a population.  We 

would accomplish that by obtaining a sample of size n and computing the mean of that sample.  

Suppose that we were to obtain a large number of samples, all of size n, and use each one to 

estimate µ.  These values would all be equally good estimates of µ, but they would not all be 

equal to each other.  The degree to which they vary is the variance of the sample estimate.  A 

researcher will usually only obtain one sample, but a single sample is usually sufficient to get a 

good estimate of the variance of the estimate of θ.  Smaller sample estimate variation results in 

greater power. 
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In observational studies, the magnitude of effect is usually beyond the control of the 

researcher.  This leaves the variance of the sample estimate of θ as the only factor which 

affects power that the researcher may control.  The variance of the sample estimate is 

generally a function of the population variance (roughly, how much population values vary 

around their mean) and the sample size.  If there is high variation around the mean within a 

population, then we would observe large variation in estimates across samples.  Conversely, 

small population variance will result in sample estimates that have lower variation.  Independent 

of population variation, bigger samples result in lower sample estimate variance.  With larger 

samples, observations far from the mean in one direction tend to be canceled out by 

observations extreme in the other direction so estimates become more precise. 

��� �	�
���
���������������
����	������	
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Experimenters are often asked to estimate the power for a particular experiment.  In 

order to accomplish that, the experimenter must have four pieces of information.  The first and 

most important is a well defined null hypothesis.  Power is only defined in the presence of a 

meaningful null hypothesis and without that, good power estimates are impossible.  Second is 

an estimate of the magnitude of effect.  This may be an actual value such as µ1 - µ2 = 4 or more 

general, such as “large” or “medium” effects.  Third, is the population variance and forth is the 

sample size. 

A well defined hypothesis and the sample size are fixed by the researcher.  The 

magnitude of effect and population variance are usually not exactly known nor are they always 

manipulable.  Sometimes pilot testing or previous research yields reasonable estimates of both 

magnitude of effect and population variance.  These estimates may be treated as true 

population values in estimating power.  The experimenter may define a meaningful effect, that 

is a point below which the discrepancy between the null and alternative hypothesis, although 

real, would not be of substantive interest.  For example, the researcher may say that if the 

difference between two population means is less than 4, then the effect is trivial and essentially 

the same as if two means were equal.  The researcher would then set the magnitude of effect 

to 4.  Another alternative is to define the magnitude of effect in terms of the unknown population 

variance, or its square root, the standard deviation.  The experimenter may define a “medium” 

effect as, say, µ1 - µ2 = 1.5 standard deviations and a “large” effect as µ1 - µ2 = 2 standard 

deviations.  Effects defined this way satisfy both the magnitude of effect and variance 

requirements. 
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Given a well defined null hypothesis, and good estimates of the magnitude of effect and 

variance, a researcher may want to estimate power for a range of possible sample sizes.  

Alternatively, the researcher may want to estimate the sample size necessary to obtain a 

specified level of power.  In either case, there are equations for estimating one of the variables, 

if the others are given.  Figure 1 is a graphic depiction of a comparison between hypothetical 

null and alternative distributions.  The left-hand curve is the null distribution, the distribution that 

the test statistic will have if the null hypothesis is true.  For any statistical test, the null 

distribution is fixed and its properties are well understood.  The other curve is the alternative 

distribution, the distribution of the test statistic for a certain situation when the null hypothesis is 

false.  The alternative distribution shown is just one of an infinite number of possible null 

distribution under the infinite number of possible non-null situations.  Other alternative 

distributions will have more or less overlap with the null distributions.  The x-axis is the value of 

the test statistic.  At the center of the null distribution, the value of the test statistic is zero. 

The critical value is chosen to divide the null distribution into two regions, the portion of 

the null distribution to the right of the critical value is α, usually 5%.  If the null hypothesis is 

true, then the probability that the test statistic is more extreme then the critical value is α.  The 

values along the x-axis more extreme then the critical value constitute the rejection region.  The 

critical value also divides the alternative distribution.  The portion to the left is β, the probability 

of accepting a false null hypothesis.  The portion to the right is power, the probability of properly 

rejecting a false null hypothesis.  Increased sample sizes increase the disparity between the 

null and alternative hypotheses, increasing power. 

��� 	�����������������������������	�$%���	�&������$�����

So what does this mean for YIW collaborators?  To answer this question, we begin by 

looking at the kinds of outcomes (dependent variables) that we will be studying, both in the 

cross-site and in the individual studies. 

Based on our review of the sites’ applications, the discussions we’ve had with each site 

about interventions and design, and the logic models that the sites have developed, it is clear 

that one major class of dependent variables are prevalence rates or other proportions�e.g., the 

prevalence of “binge drinking” in the workforce (or among covered lives), the proportion of 

employees (or covered lives) who had an emergency room visit during a specific time period.  

Table 1 shows for varying proportions/percentages the sample sizes required for 80% power 

(one-tailed test) to detect relatively small, medium, and larger effects. 



STATISTICAL POWER:  A PRIMER 

SAMHSA/CSAP DIVISION OF WORKPLACE PROGRAMS 7 FEBRUARY 18, 2004 

The sample sizes shown in Table 1 are relatively large, particularly for the smaller 

proportions and smaller effect sizes.  For example, if the prevalence of “binge drinking” were 

5%, and we wanted to have 80% power to detect a 1-percentage point reduction in that 

prevalence in the intervention vs comparison group (i.e., 5% vs 4%), we would need a sample 

of 6,391 participants in each group!  This demonstrates an unfortunate reality of statistical 

power for endpoints that are expressed as proportions�the smaller the prevalence, the more 

subjects required.  By way of comparison, suppose that the prevalence of “negative attitudes 

toward substance abuse” was 40%, and we wanted to have 80% power to detect a 20-

percentage point difference between intervention and comparison groups (i.e., 40% vs 20%).  

In this case, we would need only 76 subjects per group. 

These analyses underscore the need to think through the research and policy questions 

that underlie the YIW initiative, and to plan carefully that we will be able to address those 

questions definitively.  The primary point is:  given the kinds of interventions that are being 

tested in the YIW initiative, and therefore the kinds of effect sizes we are likely to have, are the 

current estimates of sample size realistic?  Over the coming weeks, the Cross-Site Evaluation 

Contractor will be talking with each of the site teams about a variety of issues, including sample 

size, to examine the implications for each of the sites’ studies.  As we have emphasized in our 

discussions of cross-site issues at past Workplace Managed Care Steering Committee 

meetings, there are a number of factors other than sample size that influence Type II error 

(e.g., design-based influences, measurement reliability, analytic method).  Sample size, 

however, remains one of the most important determinants. 
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Table 1. Sample sizes required for varying outcome proportions and expected 
differences between intervention and comparison groups. 

If the Outcome is: And we want to detect a Difference of: Sample Size Required* 

1% 6,391 

2% 1,725 5% 

3% 821 

1.5% 5,236 

3% 1,388 10% 

5% 534 

3% 1,882 

6% 502 15% 

9% 236 

2% 5,109 

5% 857 20% 

10% 229 

25% 3,818 

5% 980 25% 

12.5% 168 

3% 2,951 

9% 342 30% 

15% 127 

3.5% 2,337 

9% 362 35% 

17.5% 98 

4% 1,873 

10% 304 40% 

20% 76 

4.5% 1,514 

10% 307 45% 

22.5% 59 
 
*Sample size per group required to achieve a power of .80 in a one tailed test. 


